Long-term potentiation of C-fiber-evoked potentials in the rat spinal dorsal horn is prevented by spinal N-methyl-D-aspartic acid receptor blockage.
نویسندگان
چکیده
Long-term potentiation (LTP) of synaptic potentials is a fundamental mechanism of memory formation in the hippocampus. Here, we have characterized long-term changes of field potentials which were evoked in the lumbar spinal dorsal horn by supramaximal electrical stimulation of the sciatic nerve in urethane anesthetized rats. The field potentials had high thresholds (> or = 7 V), long latencies (90-130 ms, corresponding to conduction velocities between 1.2 and 0.85 m/s) and were not affected by spinalization (at C5-C6) or muscle relaxation (with pancuronium), i.e. the potentials were probably evoked by afferent C-fibers. Tetanic electrical stimulation (0.5 ms pulses, 30-40 V, 100 Hz, given in 4 trains of 1 s duration at 10 s intervals) of sciatic nerve induced in all 9 rats tested a LTP of amplitude of the C-fiber-evoked potential throughout recording periods which lasted between 4 and 9 h. Mean potentiation ranged from +71% to +174%. Superfusion of spinal cord with N-methyl-D-aspartic acid (NMDA) receptor antagonist D-(-)-4-(3-phosphonopropyl)piperazine-2-carboxylic (500 nM), which has little effect on the amplitude of C-fiber-evoked potentials, completely blocked LTP induced by tetanic stimulation in all five rats tested. Superfusion of spinal cord with NMDA (1 microM, 10 microM or 50 microM) induced LTP in only 2 out of 8 rats. This is the first report showing that LTP of C-fiber-evoked field potentials in the spinal dorsal horn in vivo may last for more than 8 h. This LTP in the spinal dorsal horn may underlie plastic changes of spinal nociception.
منابع مشابه
Involvement of reactive oxygen species in long-term potentiation in the spinal cord dorsal horn.
Recent studies suggest that reactive oxygen species (ROS) are functional messenger molecules in central sensitization, an underlying mechanism of persistent pain. Because spinal cord long-term potentiation (LTP) is the electrophysiological basis of central sensitization, this study investigates the effects of the increased or decreased spinal ROS levels on spinal cord LTP. Spinal cord LTP is in...
متن کاملDual modulation of excitatory synaptic transmission by agonists at group I metabotropic glutamate receptors in the rat spinal dorsal horn.
The effects of group I metabotropic glutamate (mGlu) receptors on excitatory transmission in the rat dorsal horn, but mostly substantia gelatinosa, neurons were investigated using conventional intracellular recording in slices. The broad spectrum mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S, 3R-ACPD), the group I mGlu receptor selective agonist (S)-3, 5-dihydroxyp...
متن کاملLong-term depression of C-fibre-evoked spinal field potentials by stimulation of primary afferent A delta-fibres in the adult rat.
Long-term potentiation (LTP) of spinal C-fibre-evoked field potentials can be induced by brief electrical stimulation of afferent C-fibres, by natural noxious stimulation of skin or by acute nerve injury. Here, we report that in urethane anaesthetized, adult rats prolonged high frequency burst stimulation of the sciatic nerve at Adelta-fibre strength produced long-term depression (LTD) of C-fib...
متن کاملMu opiates inhibit long-term potentiation induction in the spinal cord slice.
Long-term potentiation (LTP) involves a prolonged increase in neuronal excitability following repeated afferent input. This phenomenon has been extensively studied in the hippocampus as a model of learning and memory. Similar long-term increases in neuronal responses have been reported in the dorsal horn of the spinal cord following intense primary afferent stimulation. In these studies, we uti...
متن کاملLong-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain.
Our previous study has reported that electroacupuncture (EA) at low frequency of 2 Hz had greater and more prolonged analgesic effects on mechanical allodynia and thermal hyperalgesia than that EA at high frequency of 100 Hz in rats with neuropathic pain. However, how EA at different frequencies produces distinct analgesic effects on neuropathic pain is unclear. Neuronal plastic changes in spin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience letters
دوره 191 1-2 شماره
صفحات -
تاریخ انتشار 1995